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The link between the Absar-Coleman and the Valdemoro reduced HamiltonJan has been 
established. Further, a study of the size-consistency of approximations based on these Hamilto- 
nians has been carried out. It is found that the energies obtained with reduced Hamiltonians 
that are defined in the full configuration interaction model spaces are not size consistent. 

1. I n t r o d u c t i o n  

In paper I of this series [1 ], the general structure of matrix elements correspond- 
ing to spin-nonadapted reduced Hamiltonians (RHs), as well as their relationship 
with spin-adapted reduced Hamiltonians (SRHs), was considered. The SRH intro- 
duced by Valdemoro [2-4] is defined by means of a contraction mapping [2-6] 
applied to an N-electron Hamiltonian acting in the antisymmetric and spin- 
adapted component of the N-fold tensorial product of a one-electron spin-orbital 
space. In the same way, the RH [1] is defined by the same kind of mapping applied 
to the antisymmetric component of the tensorial product space mentioned (i.e., 
the space spanned by N x N Slater determinants). Therefore, the definition of 
these reduced Hamiltonians reflects the properties of the model Hilbert space in 
which the original N-electron system is defined. 

In contrast, the reduced Hamiltonian as originally introduced by Bopp [7] is 
defined independently of the Hilbert space in which the N-electron problem is mod- 
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eled. This Hamiltonian was extensively studied [8-13] and although it was origin- 
ally defined to be independent of the Hilbert space considered, in all practical calcu- 
lations on many-electron systems a truncated Hamiltonian defined over a finite 
basis of spin-orbitals had to be used. This Hamiltonian yields, by contraction, the 
corresponding truncated one-body reduced Hamiltonian [12]. Since the finite- 
dimensional model space has to be employed in practical applications, its proper- 
ties should be reflected by the corresponding reduced Hamiltonian in some way. 

One would expect that although the definitions of  these two kinds of  reduced 
Hamiltonians are different, they should be interrelated. Surprisingly enough, as far 
as we know, there is little known in this regard. The only observation that has 
been made [4] indicates that for the singlet spin-symmetry adapted case, the eigen- 
vectors of  one-body SRH are the same as those of  the Absar-Coleman one-body 
reduced Hamiltonian 1K [10-12]. The Be atom in a double zeta (DZ) basis set [14] 
was used to exemplify this fact. 

This paper is partially devoted to fill this gap. In particular, we will show that 
al though in the case of  the Be atom (in a DZ basis set), the eigenvectors of  the one- 
body singlet-adapted reduced Hamiltonian (1-SRH) are the same as those of the 
1K Hamiltonian, this equality does not hold in general. Indeed, this equality is rea- 
lized only in rather special circumstances. In contrast, we will show that the spin- 
nonadapted 1-RH and I K always fulfill this property. 

It is worthwhile to emphasize that the eigenvectors of reduced Hamiltonians 
are the most  useful objects yielded by these operators, since they may be used to 
calculate the energy and, in general, the physical properties of an N-electron system 
considered [4,10,12,13,15,16]. Thus, the study of properties of  these eigenvectors 
is of primary interest. In the present paper, we consider the problem of  size-consis- 
tency [17,18] of  the eigenvectors of these reduced Hamiltonians. The lack of size- 
consistency is one of the typical liabilities of variational quantum-chemical  meth- 
ods. We will thus examine to what extent the eigenvectors corresponding to a sys- 
tem composed of  several identical non-interacting subsystems are equal to a direct 
product  of the eigenvectors of isolated subsystems 2. We will see that the formalism 
based on the considered reduced Hamiltonians is not size-consistent, which 
implies that we must  avoid a comparison of systems of  different sizes when using 
approaches based on the eigenvectors of  these reduced Hamiltonians. 

The paper is organized as follows: In section 2 we present 1-SRH and 1-RH 
matrices defined in an orbital space. Since the IK operator is defined in a spin- 
orbital space [12], we proceed to its spin-integration in section 3. Then, we investi- 
gate the conditions that must  be fulfilled by the 1-SRH and 1-RH in order to have 
the same eigenvectors as I K. Finally, in section 4 we study the problem of  size- 
consistency of eigenvectors in a truncated finite-dimensional Hilbert space, as 

2 In fact, this definition corresponds to the N-consistency. The size-consistency is a more general 
property [18], but in practice, people use size-consistency as being synonymous with N-consistency. 
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well as the asymptotic behaviour when the Hilbert space is being completed. The 
effect of truncation when defining model spaces is also discussed. 

2. One-body spin-adapted and spin-nonadapted reduced Hamiltonians 

The A3,-matrix element of the pth order spin-adapted reduced Hamiltonian can 
be written as follows [19,20]: 

1 1 
P H'+;' = p.5 { ijlkl} < < > > , (1) 

ijkl 

where 

{/jlkl} = <i(1)l<k(2)lhz(1 , 2)1l(2))1j(1)) 

1 
+ ~ [6kt(i(1)[]~l (1)l j (1) )  + 6u(k(1)[hi (1)1/(1)>] (2) 

are generalized two-electron integrals. The indices i,j, k, l represent orbitai labels; 
A, 7 are strings of orbital labels; 2E[~,I"E~ are spin-free density operators and, ( ( ) )  
designates a trace evaluated in tl~e antisymmetric and spin-adapted part H A (N, 
K, S, M) of the N-fold tensorial product of one-electron spin-orbital spaces, also 
called the FCI space. Equation (1) also applies to spin-nonadapted reduced Hamil- 
tonians, in which case the trace is evaluated in the space H A (N, K) generated by 
Slater determinants, i.e. in the antisymmetric part of the N-fold tensorial product 
of one-electron spin-orbital spaces. 

General formulas for matrix elements of this pth order reduced Hamiltonian 
were derived earlier [1,20]. In the particular case ofp = 1, these reduced Hamilto- 
nians have the form 

(1 - SRH)~ = ~ = ({aaldd}F + {adlda}G)~pq + {aa~q}B + {aplqa}C , 
(3) 

(1 - RH~q = ~ = tz[aaldd]6pq +/3[aa~q]. (4) 

Here, ~ and ~ designate thepq matrix element of the 1-SRH and 1-RH, respec- 
tively. The coefficients B, C, F, G, #,/3 are given in the appendix. The remaining 
terms in eqs. (3) and (4) are the following combinations of generalized two-electron 
integrals: 

K 

{aa~q} = ~ { k k ~ q } ,  (5) 
k 

K 

{aplqa} = y~{kplqk}, (6) 
k 
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K 

( aa ldd  } = ½ ~-~jkk l l l  } , (7) 
kl 

K 

{adla '  a) = ½ {kll lk} , (8) 
kl 

[aa[pql = {aalpq} - ½{aplqa} , (9 / 

[aaldd] = {aa la 'd}  -½{adla 'a}.  (10) 

3. Spin-free Absar-Coleman one-body reduced Hamiltonian and its 
relationship to the SRH and RH 

For the Hamiltonian of a system of N identical fermions, involving only one- 
and two-particle interactions, 

H =  ~-~hl(i) + ~--~+h2(i,j), (11) 
i i<j  

the energy of the system for a pure state 13 can be calculated by the well-known 
formula 

E = Wr(2K2DZ), (12) 

where 2/)z is the second-order reduced density matrix for the state 13 and 2K is the 
corresponding reduced Hamiltonian [11,12,21], 

N 
~K = ~-[hl(1)+ h1(2)+ ( N -  1)h2(1,2)]. (13) 

This reduced Hamiltonian, as pointed out in section 1, is defined independently 
of the Hilbert space employed. However, in all practical calculations on many- 
electron systems, a truncated Hamiltonian defined over a finite basis set of r = 2K 
spin-orbitals has to be used. The resulting matrix is thus the representation of the 
operator given by eq. (13) in the antisymmetric geminal space, i.e., the antisym- 
metric two-fold tensorial product of one-electron spin-orbital spaces, 

N [hab~ca -- haa+Scb -- hcb~aa + hca6~b] 2 ~ a c  
JXbd ~- 

N ( N -  1) 
-t 4 [ ( a b l c d )  - (aalcb)] (14) 

Here, hij and (ijlkl) are standard one- and two-electron integrals involving spin- 
orbitals. The contraction of this tensor gives us the Absar-Coleman one-body 
reduced Hamiltonian 1K [ 12], 
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1g~ =/'~~2Tc'ac'"bc -- N ( r -  2) hab + 4 
c 

N ( N -  1) • 
+ 4 ~-~[(ablcc) - (aclcb)]. (15) 

c 

Since the original Hamiltonian, eq. (11), is spin-free, we can integrate over the 
spin variables to yield a spin-free, one-body reduced Hamiltonian. After some alge- 
bra that takes into account the orthogonality of spin functions, we get 

IgqP= N ( N - 1 ) ( ( ~ _ _  1 ) [ ( g - 1 ) h p q +  Tr(h)3pq] 

+ ~[ (pq l kk ) -½(pk l kq ) ]  , (16) 
k 

wherep, q, k are orbital labels and K = r/2 is the number oforbitals. 
The definition of generalized two-electron integrals, eq. (2), allows us to write 

K 

'K~ = N ( N -  1)~'~[{pqlkk}-½{Pklkq} ] . (17) 
k 

Finally, eq. (9) enables a more compact expression for this operator, i.e. 

1K~ = N ( N -  1)[pqIaa ] . (18) 

A comparison of eqs. (4) and (18) then yields the relationship between these 
two types of reduced Hamiltonians, namely 

= #[aala'a']SPq + N ( N -  1) 

= k,6pq + k21K~. (19) 

Equation (19) implies that ~ and 1K have the same eigenvectors. However, tak- 
ing into the account that the eigenvectors ofk and ~ are generally distinct, we must 
conclude that the eigenvectors of k and l ~  (for all spin values, including S = 0) 
are generally also distinct, contrary to the results obtained earlier [4]. However the 
specific values of N and K in the very particular case of Be in a DZ basis model 
yield the B and C coefficients for k (in a singlet symmetry) fulfilling B = -2C,  and 
then, the same eigenvectors for ~, ~ and 1K. (See eqs. (3), (4) and (18).) 

On the other hand, the results of Absar and Coleman [10] and Absar [12] suggest 
that the eigenvectors of 1~ have a definite advantage in many chemical calcula- 
tions when the comparison is made with the SCF orbitals, specially when excited 
states are studied. We can now provide a very simple explanation of this fact relying 
on eq. (19). This equation states that the eigenvalues of 1K are the same as those 
of ~, and ~ can be written [2-4] in terms of the one-body reduced density matrices of 
all states of our system as follows: 
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= Z (20/ 
L 

The diagonalization of ? gives eigenvectors that are "averaged" natural orbi- 
tals. It is well known that natural orbitals provide the fastest convergence of CI 
expansions. Thus, the approximate natural orbitals may also be expected to pro- 
vide a fast convergence of these expansions. 

4. The  size-consistency problem 

A typical shortcoming of many variational quantum chemical methods is that 
the energy of a dimer composed of two identical but noninteracting monomers 
(two monomers separated by a large distance will serve as an example of such a 
dimer) is not twice the energy of the isolated monomer. This lack of size-extensivity 
is present in any truncated configuration interaction method. In this case the defi- 
ciency is often exemplified [18] by a model of two noninteracting H2 molecules 
treated by configuration interaction limited to double excitations (DCI). By defini- 
tion, DCI wavefunction of each of the monomers involves double excitations 
within each monomer. When we restrict the supermolecule trial function to double 
excitations, we thus exclude the possibility that both monomers are simulta- 
neously doubly excited, since this represents a quadruple excitation in the supermo- 
lecule. Then, the supermolecule wavefunction truncated at the DCI level does not 
have a sufficient flexibility to yield twice the DCI monomer energy. 

A similar reasoning will lead us to conclude that there is a lack of size-consis- 
tency in spin-adapted reduced Hamiltonians based approaches. We take again the 
above example of two non-interacting H2 molecules. Let us imagine that we are 
interested, for instance, in singlet spin-adapted states. When calculating an isolated 
monomer, the relevant FCI space of the N-electron system must be singlet spin- 
adapted. We expand the H2 Hamiltonian in this space and the, by contraction, we 
get the corresponding SRH. The same spin symmetry has to be imposed on the Hil- 
bert space of the dimer. Nevertheless, the dimer can reach the singlet symmetry 
not only by coupling two singlet hydrogen molecules, but also by coupling two tri- 
plet ones; this last possibility being excluded when calculating isolated monomers. 
We can thus state that the resulting SRH Hamiltonian lacks size consistency. 

Since the above reasoning is based on spin-adaptation, one wonders whether 
the RH is size-consistent or not. The study of the consistency of the eigenvectors of 
RH (or those of 1K, that are the same) is the aim of this section. We are interested 
in the eigenvectors because these are the quantities involved in the calculation of 
physical properties of N-electron systems [4]. 

Equations (9), (5), (6) and (2) applied to eq. (18) lead us to rewrite it as 

[._ 1 + (aa~q) -½(ap]qa)] (21) 1KP = N Tr(h)~pq + N ( N -  1 ) [ N _ l h p q  
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where (aa[pq) and (aplqa) are defined as in eqs. (5) and (6), but involving s tandard 
two-electron integrals instead of  generalized two-electron ones. Further ,  N is the 
number  of  electrons and K is the number  oforbitals.  

Note  that  IKqP has the same eigenvectors as the operators enclosed in brackets 
in eq. (21), which will be hereafter designated as O~q. For  an x-polymer formed by 
" x "  noninteract ing monomers ,  this operator  has the form 

x K -  1 
O~q(X) = x N  1 hpq + (aa~oq)-½(aplqa ). (22) 

In principle, p and q may  be orbital labels belonging to two different mono-  
mers. However,  if the monomers  do not interact, all the integrals in eq. (22) vanish 
in this case. Then, the matrix representation of  the operator  (9 for the x-polymer is 
blocked. There are x identical blocks, each corresponding to one monomer .  Conse- 
quently, the eigenvectors of  this matrix are given by the direct product  ofeigenvec- 
tors associated with individual blocks. Unfortunately,  these blocks are different 
f rom the matr ix representation of  (9 for an isolated monomer  (x = 1 in eq. (22)). 
That  proves that  neither 1 k nor  ? are size-consistent. 

All the same, when the number  of  orbitals K ~ c~, i.e., when the Hilbert space 
becomes complete, 1K, f and ~ have the same eigenvectors as the core Hamil tonian 
hi (i) [22] 3 This means that they are size-consistent in a complete Hilbert  space. 
Thus, the lack o f  size-consistency originates in a t runcat ion of  the complete infi- 
nite-dimensional Hilbert space to that  defining the FCI  model  space in which prac- 
tical problems have to be considered. 

Equat ion (22) may  be rewritten in a more  convenient way as follows: 

~q(X) K -  1/X h - N  ~/x Pq + (aaL°q)-l(aplqa)" (23) 

This expression leads us to predict "accidental"  size-consistencies. One case is 
when K = N, we call it fortuitous size-consistency. Other  more  interesting cases 
arise when K and N are large enough so that  1 and 1/x may  be neglected. In this 
case we have a "numer ica l"  size-consistency. Also, eq. (23) tells us that  the differen- 
tial size-consistencies decrease when x increases. 

We conclude that  the lack of  size-consistency of  reduced Hamil tonians is a com- 
mon,  unavoidable failure of  all operators of  this kind, since in practical numerical  
calculations a finite-dimensional FCI  space models an infinite-dimensional com- 
plete Hilbert  space. Thus, the t runcat ion of  an infinite-dimensional complete 
Hilbert  space to a finite-dimensional FCI  space is responsible for the lack of  size- 
consistency of  reduced Hamiltonians.  

3 The reader must not conclude that the eigenvectors of 2-RH and 2-SRH converge towards the 
ones of 2K when the Hilbert space is completed. Indeed, the eigenvectors of 2-RH and those of 
2-SRH converge towards the ones of H(1,2) = hi (1) + h1(2)+ h2(1,2) [1,23] that are different 
from those of 2K, defined in eq. (13) (except for the obvious case ofN = 2). 
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Appendix 

Coefficient of  one-electron reduced Hamiltonians 
(a) Spin-adapted reduced Hamiltonian [19,20,24]: 

F = ( ( n l n 2 n 3 ) )  
N,K 

G = --((nln2n3)) + 2 ( ( n l ) )  
N,K N-2,K- 1 

+ 2((nl))N_2,K_ 1 + ((nln2))  B = -((nln2n3))N, K N,K' 

C = ( ( n l n 2 n 3 ) )  - 3((nl))  - ((nln2)) + 2D(N - 2, K - 1), 
N,K N-2,K-  1 N,K 

N ( N -  1 ) ( N -  2 ) D ( 0 ) -  6 ( N -  2) 
( (n ln2n3) )u ,K=K(K ~)(K -- 2) ( K -  1 ) ( K -  2) D(1), 

((nln2)) - N ( N - 1 )  D(O) - - - -~2 D(1), 
N,K K ( K -  1) ( K -  l) 

( N -  2)D(1) ' 
((nl))N-2,K-1 -- ( K -  1) 

D(i) = D ( N -  2i, K -  i ,S) ,  

K + I  - N + S + I  ' 

(b) Non spin-adapted reduced Hamiltonians [1]: 

fl = --l ( (nln2n3 ) )N, K + ((nln2))N,x., 

#=((n ln2n3) )  
N,K 

((nlnz'"nP))N,K = 2 p ~ ( p ~  ( 2 ( K - p )  ~ . 
i=0 \ t / \ N - p -  iJ  
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